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Invertible Point Transformations, Painlev6 Test, 
and the Second Painlev6 Transcendent 
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The techniques of invertible point transformations and the Painlev6 analysis can 
be used to construct integrable ordinary differential equations. We compare both 
techniques for the second Painlev6 transcendent. 

For nonlinear ordinary and partial differential equations the general 
solution usually cannot be given explicitly. It is desirable to have an 
approach to find out whether a given nonlinear differential equation is 
integrable. A powerful tool to find integrable differential equations (both 
ordinary or partial) is the Painlev6 test (Weiss, 1984; Ward, 1984; Steeb 
and Euler, 1988; Steeb, 1990). A special class of ordinary differential 
equations which possess the so-called Painlev6 property is given by the 
six Painlev6 transcendents (Davis, 1962). They also arise in the group- 
theoretic reduction of soliton equations such as the Korteweg-de Vries 
equation, the modified Korteweg-de Vries equation, the one-dimensional 
sine-Gordon equation, and the one-dimensional nonlinear Schr6dinger 
equation. For ordinary differential equations the Painlev6 analysis and 
the invertible point transformation (Leach and Mahomed, 1985, Duarte 
et al., 1987, 1989, 1990) can be used to construct integrable nonlinear 
equations or equations which are related to the Painlev6 transcendents. 
We compare both techniques for the second Painlev6 transcendents. A 
similar program for the anharmonic oscillator has been performed by 
Duarte et al. (1990). 
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We consider the second Painlev6 transcendent, 

d 2 U - 2 u 3 +  T U + a  
dT  2 (1) 

and perform an invertible point transformation to find the anharmonic 
oscillator 

a2u 
dfl ~-fl (t) +f2(t)u +f3u 3 = 0 (2) 

This provides a condition on jq (t), f2(t), and f3(t) such that the anharmonic 
oscillator (2) can be transformed to the second Painlev6 transcendent (1). 
We also perform the Painlev6 test for equation (2). This also gives conditions 
onf~(t) , f2( t ) ,  andf3(t).  We show that the two conditions are the same for 
the two approaches. 

Let us first discuss the Painlev6 test. Euler et al. (1989) studied the 
anharmonic oscillator (2) wherejq , ~ ,  andJ~ are smooth functions of t with 
the help of the Painlev6 test. We assume that j~ ~ 0. For arbitrary functions 
fl  ,j~, a n d ~  the nonlinear equation (2) cannot explicitly be solved. A remark 
is in order for applying the Painlev6 test for nonautonomous systems. The 
coefficients that depend on the independent variable must themselves be 
expanded in terms of t - h ,  where t~ is the pole position and we use the 
identity t - ( t - t l ) +  h .  If  nonautonomous terms enter the equation at lower 
order than the dominant balance, the above-mentioned expansion turns out 
to be unnecessary, whereas if the nonautonomous terms are at dominant 
balance level, they must be expanded with respect to t -  tl. Obviously J] ,j~, 
and J~ enter the expansion not at dominant level. 

Euler et al. (1989) gave the condition that (2) passes the Painlev6 test. 
The condition is given by the differential equation 

9ft34)f ~ - 54f(33{f~ / 2 + 18f(33)f3 f~ - 36(f~,)zf 2 + 192f~(f~)2~ 

_ 7 8 f ~ f , 3 f 2 f l +  . 3 n 3 2 3 6 f 3 f 3 f 2 + 3 f 3 f 3 f l -  112(f~)4 + 64(f;)3J~)q 
i 2 r 3 + 6 ( f 3 ) f l  72(f,3)2f~f2+ , , 3 f 3 - -  I t 3 90f  3 f  2 f  3 --27f~f['f33-- 57f 3 f  , f 3fJ 

p 3 I 3 3 tt 4 + 72f3f3 f2Z - 1 4 f 3 f 3 f j  - 54f2 f3  - 9 0 f ' 2 f a f ,  + 18f~3~f~ 

+ 5 4 f [ , f 4 f l + 3 6 ( f ] ) 2 f 4 _  , 4 , 4 2 36f l f  3 f z+6 0 f  , f  3 f  j 
4 2 4 4 - 36 f3 f2 f l  0 + 8 f 3 f l  = ( 3 )  

where f '  =- df/dt  and ft4) =f,,,, _ daf/dt 4. 

(1) 
Now we ask whether the equation derived above can be found from 
with the help of the invertible point transformation. Our invertible 
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transformation is given by 

T(u(t), t))= G(u(t), t), 

where 

Since 

and 

U( T(u(t), t))= F(u(t), t) 

OG OF OG OF 
A -  ~0 

Ot Ou Ou Ot 

d___U__dU dT_dU (aT du+OT]=OF du+aF 
dt dT dt dT \Ou dt at l au dt Ot 

~2v d~v ar (or du + or) 
dt 2 dT 2 dt \au dt at/  

OZT dU) +dU ( OET du a2T [du~ 2 aT d2u O2T _ _  _~ 

--ffT t~u-'~t dt t-~u21-~) +-~u -d--t2 +-~-f +ot tau 

a2F du a2Ffdu~ 2 OFd2u a2F du a2F 
aua~t dt § \--~tt]l ! +-~uu ~-t2 +Ouat dt t at 2 

we obtain from (1) 

d2U+A3(dul3-t-A2(dut2+Al~+Ao=O 
dt 2 \ dt / \ dt ) 

where 

( (7/ (75 Aa= OF OZG__ + OZF OG 2F 3 -FG - a  OG A-1 
au au 2 au 2 Ou \au/ / 

A2 = _ 2 a F  a2G aF O2G __O2F aG+ 2__a2F aG 6F 3 aG 
au au at at aU 2 "l- aU 2 at ax at Ou -~t 

a 2a 2 / o%_, 
\Ou/ at \auJ at/  

A,=( OF 02G 2 0F 02G t. 2 a2F aG a2F aG aG [aG'~ 2 
aU at 2 at au at au at at at 2 au 6F3 au- / !\~-/ 

3FG _ _  m - I  

~u \ ~t / ~u 

(4) 

(5) 

(6) 

(7) 

(8) 

(9a) 

(9b) 

(9c) 
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( (3F d2G ~ 02F OG 
A0 \ 0t 0t z Off Ot 

3 3 6 3 

\Ot]  \ O t /  / 
(9d) 

We now make a particular choice for F and G, namely 

F(u(t), t )=f( t )u( t)  

G(u(t), t)=g(t)  

(lOa) 

(10b) 

With this special ansatz we find that 

A3 = A2 = 0 (11) 

and 

Al--  

A0 = 

2f'g' --fg" 

g ' f  

( f ig '  --f'g" --fg( g')3)u -- 2f3( g')3u3 -- a( g,)3 

g'f 

(12a) 

(12b) 

For  a = 0 it follows that 

d2u A,, 
~ fl(t)  "---", + fz(t)u + f3(t)u 3 = 0 

dt 2 dl  
(13) 

where 

fl  - 2f'g' - f g"  (14a) 
g'f  

f2 - g'f" - f '  g" - fg(g')3 (14b) 
g ~  

j~ = - 2 ( f g ' )  2 (14c) 

Here f and g are arbitrary functions of  t. 
For  the case a ~ 0 one finds driven anharmonic oscillators. This case is 

not discussed here. 
We are now able to eliminate f and g from system (14). We obtain 

expI IfJ(t) dt l f ( t )  = Cf~/6 ( j ~ )  (t5) 
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By inserting equations (15) and (14c) into equation (14b), we find 

C2exp(~SJq dt) (_6f3f3,+7(f3)z2flf3f~_ 12f~ 2 2 2 2 f3 + 36J~ f3 - 8fl fs)  
g =  18f38/3 

(16) 

Inserting the derived f a n d  g in equation (14a), we find condition (3). 
To summarize: The condition (3) that the anharmonic oscillator (2) 

passes the Painlev~ test is identical to the condition that the anharmonic 
oscillator (2) can be transformed to the second Painlev6 transcendent. 
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